FIBER OPTIC SOURCE

CHARACTRISTIC

Coherence

Chromaticity

Spectral Width

Divergence

Output Power

Modes

Bit Rate

Cost

Construction

Emission

LED

Non-Coherent

Many wavelengths

36 to 40nm

Cosine power distribution

Low (pW)

Feeds MM Fiber Only

< 100-200Mbps

Less expensive

Simple- pn junction

Spontaneous

LASER

Coherent

Highly Monochromatic

2nm

Narrow pencil beam

High

Can feed MM and SM

> 2Gbps

More expensive

Complex-Laser cavity

Stimulated

CHOICE OF SOURCE

- Parameters for choice geometry of fiber, attenuation, group velocity, group delay distortion, modal characteristics.
- LED Low power, Multimode, Less precision requirement.
- LASER High power, Single/Multimode, High precision, Fiber with high attenuation, Longer distance application etc.

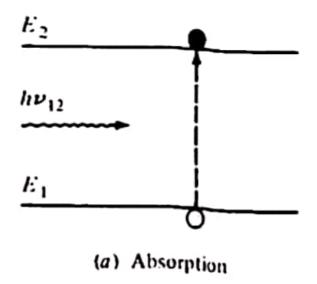
LED

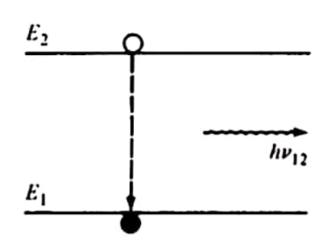
- LED is a forward-biased p-n junction, emitting light through spontaneous emission, a phenomenon referred to as electroluminescence.
- The emitted light is incoherent with a relatively wide spectral width of 30-60 nm.

LED

- LED light transmission is also inefficient, with only about 1 % of input power, or about 100 microwatts, eventually converted into «launched power» which has been coupled into the optical fiber.
- However, due to their relatively simple design,
 LEDs are very useful for low-cost applications.

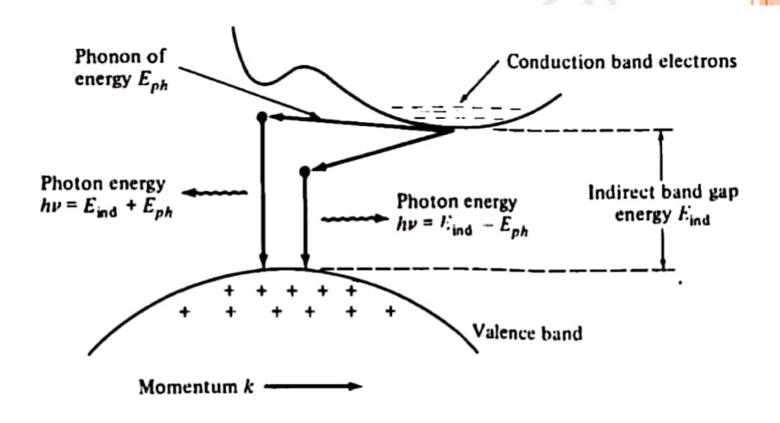
LED


- Communications LEDs are most commonly made from gallium arsenide phosphide (GaAsP) or gallium arsenide (GaAs)
- Because GaAsP LEDs operate at a longer wavelength than GaAs LEDs (1.3 micrometers vs. 0.81-0.87 micrometers), their output spectrum is wider by a factor of about 1.7.

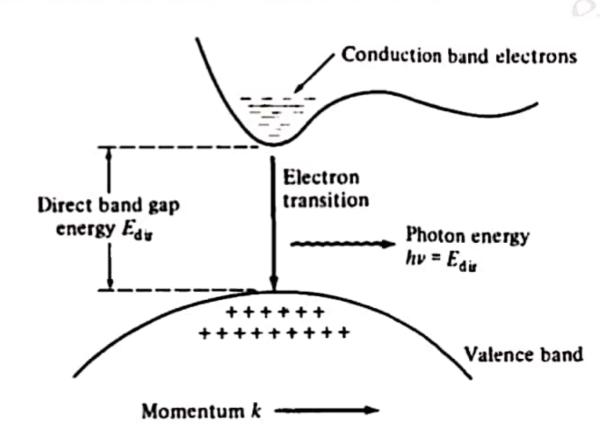

P-N JUNCTION

- If proper material chosen, recombination energy release is light.
- · p-side lightly doped and n-side highly doped.
- · Major recombination in p-side.

SPONTANEOUS EMISSION


(b) Spontaneous emission

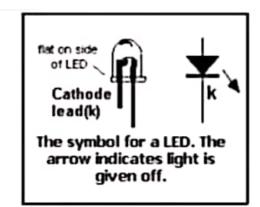
$$h\nu_{12}=E_2-E_1$$

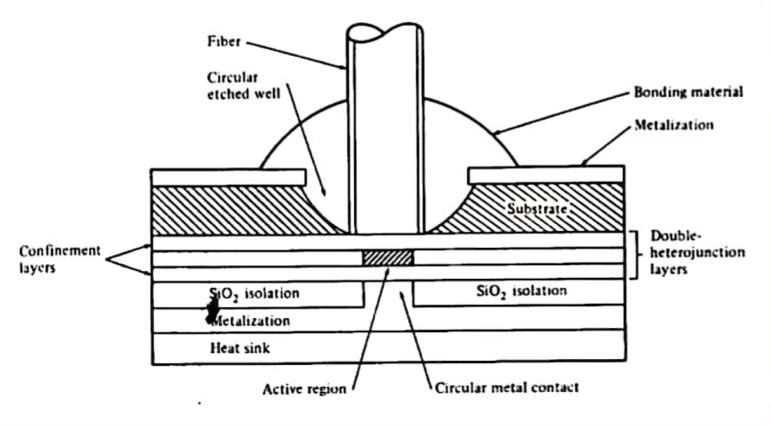

h- Plank's constant = 6.625 x 10⁻³⁴ Js

$$u_{12} = Frequency of radiation$$

IN- DIRECT BAND GAP MATERIALS

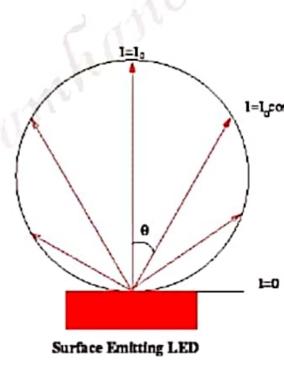
DIRECT BAND GAP MATERIALS

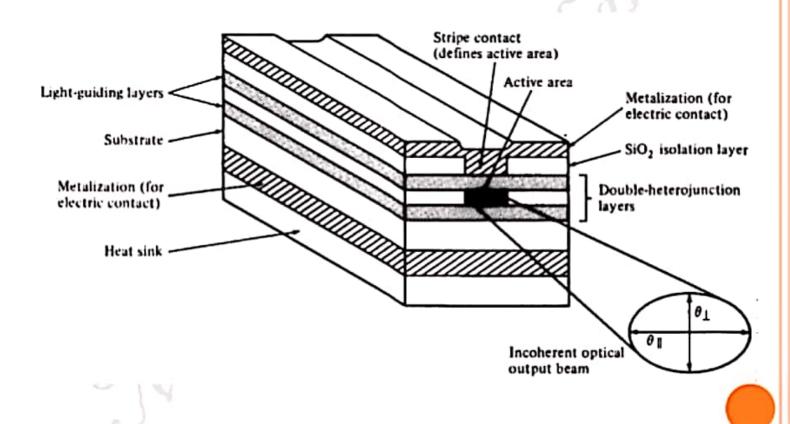

MATERIAL FOR LED


- In-Direct band-gap materials: Momentum of electrons in valance band and conduction band are not same. (Higher/lower)
- Electrons in conduction band have to search for Phonon(high energy lattice vibration) to balance momentum to convert to photon.
- This requires generation of phonon and photon simultaneously for every recombination. (Highly unlikely)
- o This results in non-radiative recombination. Si, Ge
- Direct band-gap materials: Momentum of electrons in valance band and conduction band are same.
- This does not require generation of phonon and photon simultaneously for every recombination.
- This results in most recombinations radiative.

CHOICE OF MATERIAL

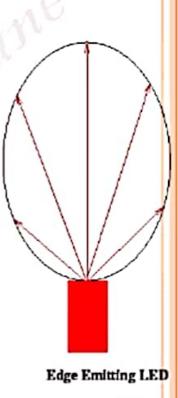
- No pure semiconductor is direct band gap material.
- Binary, Ternary and quaternary combination of band III and band V materials can give direct band gap material.
- Can give almost all recombination radiative.
- o Band III Al, Ga, In
- o Band V P, As, Sb
- o GaAs, GaAlAs, InGaAsP


SURFACE EMITTING LED BURRUS/FRONT EMITTER LED

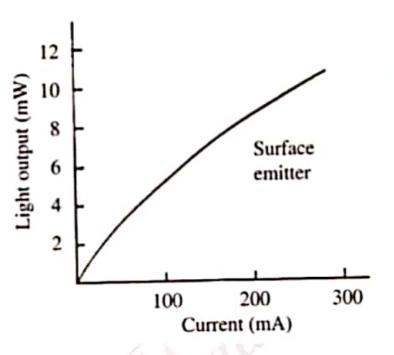


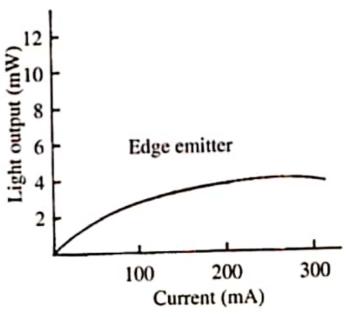
SURFACE EMITTING LED

- Plane of active light emitting region perpendicular to axis of fiber.
- Fiber cemented into well.
- Active region approximately 50µm dia and 2.5 µ.m thick.
- Emission pattern isotropic with 120° half power beam width.
- Lambertian pattern.
- Power decreases as cosine of θ .
- Source is equally bright when viewed from any direction.
- As projected area decreases as cosθ.
- Coupling not good.
- o Highly divergent.



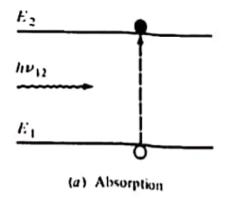
EDGE EMITTING LED



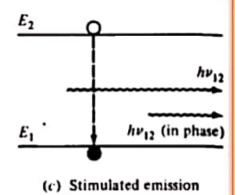

EDGE EMITTING LED

- Active region RI greater than side layers.
- o Forms waveguide channel that directs optical radiation towards side into fiber.
- Active region 50-70μm wide, 100-150μm long.
- o Emission pattern-
 - · Lambertian 1200 horizontally.
 - With proper choice of waveguide thickness, it can be 25° to 35° vertically.
- o Better than Surface Emitter.

OPTICAL OUTPUT






Highly divergent, high power

Less divergent, low power

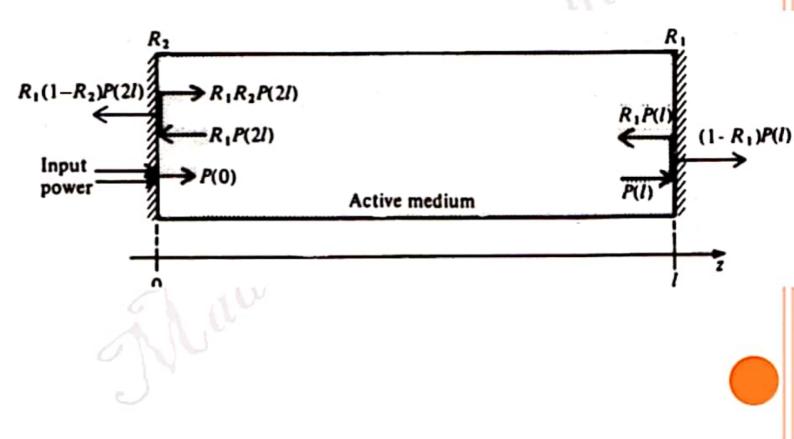
LASER LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION

$$h\nu_{12} = E_2 - E_1$$

- h- Plank's constant = 6.625 x 10⁻³⁴ Js
 - $\nu_{12} =$ Frequency of radiation

STIMULATED EMMISSION

- Electron at higher excited energy level E_2 , is impinged with external stimulation = photon energy = hv_{12}
 - Electron is forced to come down to stable state E1, radiating energy hv₁₂
- Electron can be stimulated mush before its natural spontaneous transition time.
- Emitted photon by stimulation emission has same frequency, phase and polarization as the incident photon.


POPULATION INVERSION

- In thermal equilibrium, density of electrons in non-excited lower level E₁ is much more than excited level E₂.
- Most photons emitted will be absorbed. Stimulated emission negligible.
- Stimulated emission will exceed absorption only if population of excited stage is greater than that of ground state.
- Called Population Inversion.
- Inverted population is not an equilibrium condition.
- Hence requires pumping techniques.
- In semiconductor LASER, it is achieved by injecting electrons into material at device contact to fill lower energy state of conduction band.
- In pn junction diode, forward bias applied to inject e into conduction band of p-region or holed are injected into valance band of n-region.

LASING ACTION

- o Stage two:-
- Tries for sustaining the oscillations to act as source.
- Light generated remains guided in GaAs active layer of three layer hetero-structure acting as slab waveguide.
- Two sides of waveguide cleaved perpendicular to axis.
- Act as two parallel mirror facets.
- One side completely reflective and other partially transparent to emit light out.
- Part of light in direction of transparent facets will emit out.
- Light towards reflective facet will reflect back towards output suffering absorption all along.
- Only those wavelengths sustain for which round trip phase of reflected light is same as forward light.
- Rest will decay.

LASING ACTION

LASING ACTION

- Length of cavity l chosen to give 'gain' to chosen wavelength.
- o All other wavelengths have 'loss'.
- Desired power suffers absorption and power loss as it travels.
- For overall gain, total gain > total loss.
- o Constructive oscillations for desired wavelength.
- Light increases due to stimulated emission.
- Emitted photon in phase with incident photon stimulating the emission.